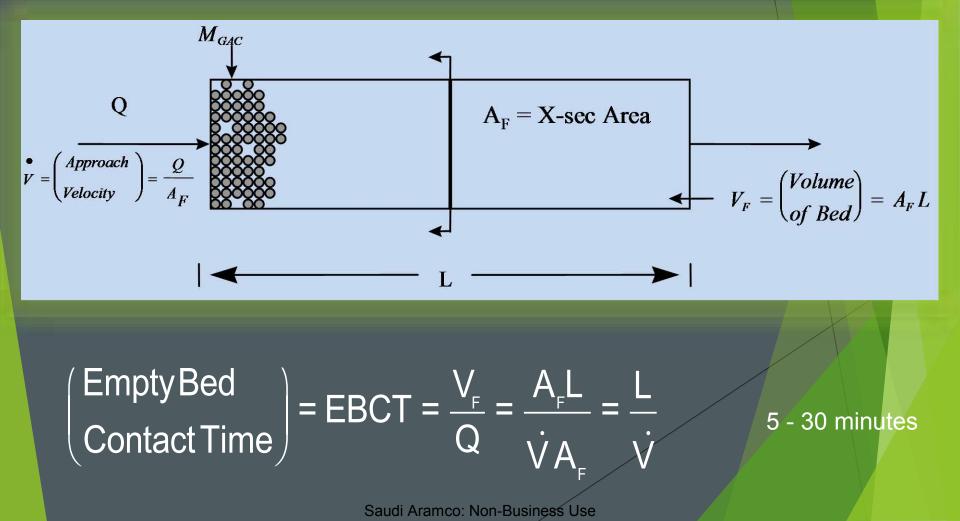




## The Effect of Volatile Organic Compounds on GAC Adsorbers

### Dr. Zeyad Ahmed, PE Engineer I, EPD / EED / WMU , Saudi Aramco

#### Dr. David W. Hand, BCEEM


Professor and Department Chair, Michigan Technological University, MI, USA

## OUTLINE

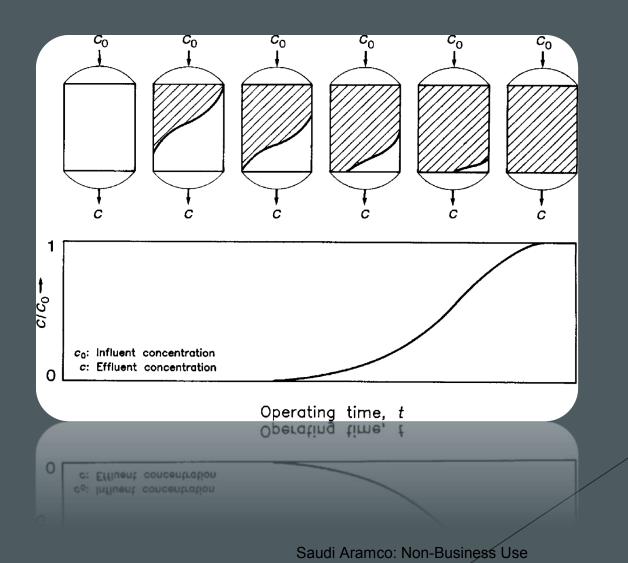
- Important design parameters for fixed-bed adsorbers
- Methods for obtaining important design parameters
- Model predictions for a variety of VOCs & SOCs and water sources using the PSDM
- Analysis of VOC removal using GAC
- GAC costs for removal of VOCs.

## Important Variables in Fixed-bed Adsorption

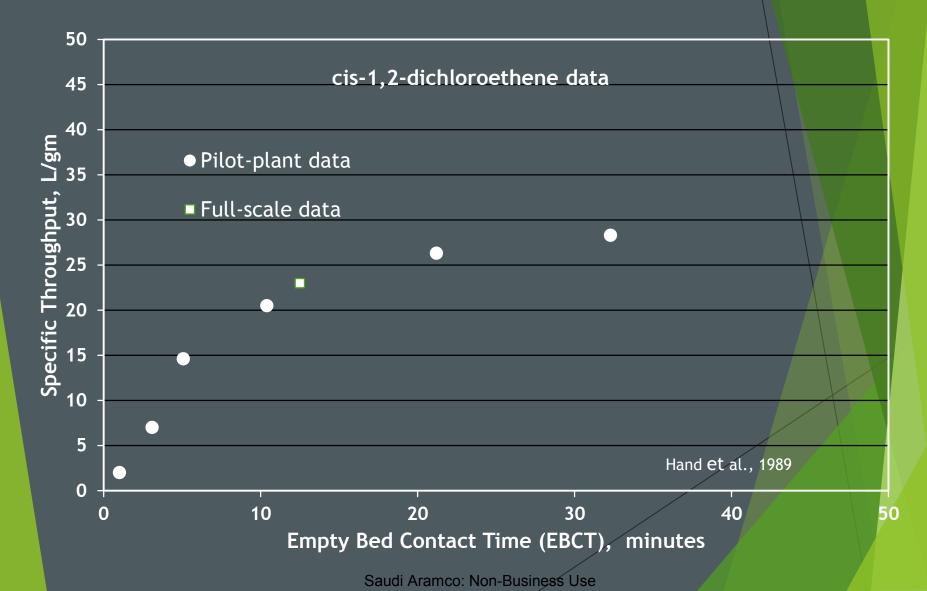
GAC Adsorber size is quantified in terms of Empty Bed Contact Time.



## Important Variables in Fixed-bed Adsorption


GAC Adsorber performance is quantified in terms of specific throughput. Defined as the volume fed to the adsorber divided by the mass of GAC in the adsorber.

$$\left( \begin{array}{c} \text{Specific} \\ \text{Throughput} \end{array} \right) = \frac{\text{Qt}}{\text{M}_{_{\text{GAC}}}}$$


Another more common way to quantify the performance of a GAC adsorber is in terms of GAC usage rate.

$$\begin{pmatrix} GAC \\ UsageRate \end{pmatrix} = \frac{M_{GAC}}{Qt} = \frac{1}{\begin{cases} Specific \\ Throughput \end{cases}}$$

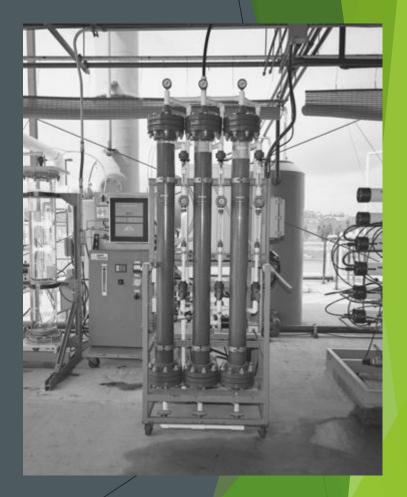
### Breakthrough Characteristics of Fixed-Bed GAC Adsorber



## Relationship Between Specific Throughput & EBCT



Full-Scale Studies Pilot-Plant Studies Rapid Small Scale Column Studies (RSSCTs) Mathematical Models


### **Full-Scale Studies:**

- Most effective method
- Most expensive
- Most time consuming



**Pilot Plant Studies:** 

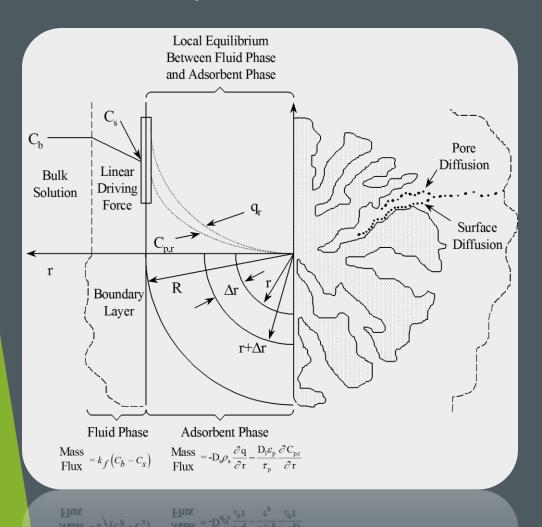
- Effective method
- Expensive
- Time consuming



### **RSSCT Studies:**

Somewhat effective method
(Need scaling factor)
Cost can be reasonable
Short time (1 wk – 1 month)

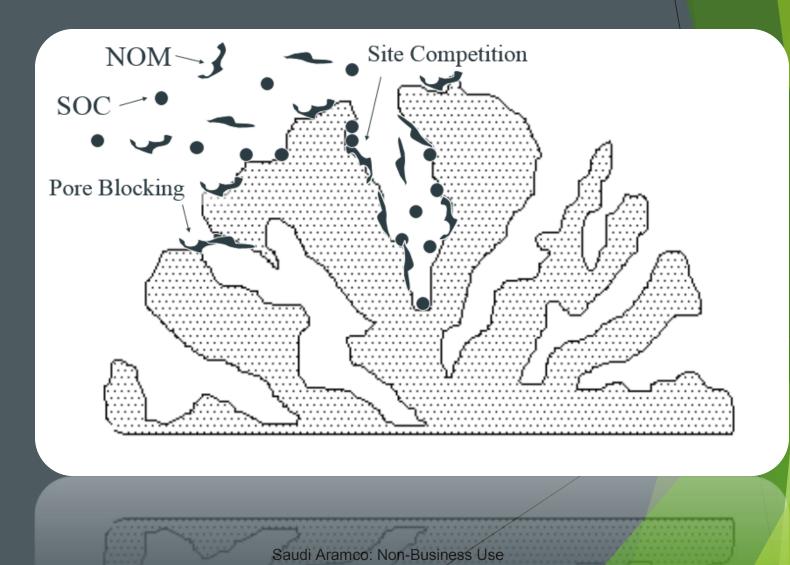



### **Mathematical Model:**

- Somewhat effective method
- Least Expensive
- Least Time Consuming



### Pore Surface Diffusion Model (PSDM)


Schematic of Intraparticle Mass Transport Mechanisms:

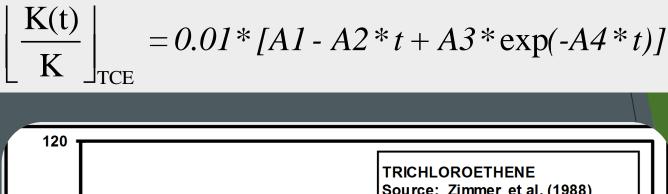


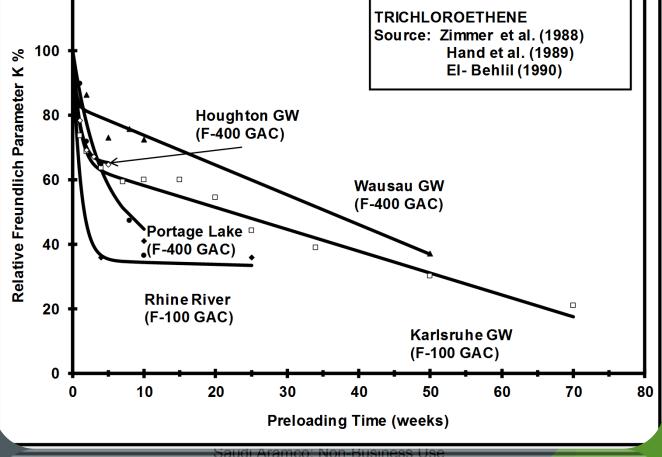
Intraparticle Mass Transport Mechanisms & Assumptions:

- Diffusion resistance in the liquid-phase surrounding the adsorbent particles and may be described by a linear driving force approximation.
- Diffusion resistance within the adsorbent particle is described by Fick's law. Intraparticle mass transport is by both surface and pore diffusion.
- There is no channeling.
- Ideal Adsorbed Solution Theory (IAST) describes the competitive equilibrium.

### MECHANISMS of NOM Interference with VOC Adsorption




Model Parameters influenced by NOM Fouling


Freundlich Capacity Parameter, K

Surface Diffusion Coefficient: D<sub>s</sub>

Pore Diffusion Coefficient: D<sub>P</sub>

### Effect of Water Type (Background Matrix) (Sontheimer et al, 1988)





### Effect of Compound Type (Sontheimer et al, 1988)

$$\frac{\mathbf{K}(\mathbf{t})}{\mathbf{K}} = B_1 \times \left\lfloor \frac{\mathbf{K}(\mathbf{t})}{\mathbf{K}} \right\rfloor_{\mathrm{TCE}} + B_2$$

Correction Factors for the Reduction in Freundlich Isotherm Capacity Parameters for Different Classes of Compounds Relative to the Reference Compound of TCE

| Class                            | Group                       | Surrogate Compound    | B <sub>1</sub> | B <sub>2</sub> |
|----------------------------------|-----------------------------|-----------------------|----------------|----------------|
|                                  | Halogenated Alkanes         | 1,1,1-Trichloroethane | 1.2            | -0.2           |
| Purgeables                       | Halogenated Alkenes         | Trichloroethene       | 1              | 0              |
|                                  | Trihalo-<br>methanes        | Chloroform            | 1              | 0              |
|                                  | Aromatics                   | Toluene               | 0.9            | 0.1            |
| Base<br>Neutrals                 | Nitro<br>Compounds          | 3,4-Dinitrotoluene    | 0.75           | 0.25           |
|                                  | Chlorinated<br>Hydrocarbons | 1,4-Dichlorobenzene   | 0.59           | 0.41           |
| Acids                            | Phenols                     | 2,4-Dichlorophenol    | 0.65           | 0.35           |
| Polynuclear-<br>Aromatics (PNAs) |                             | Methylene Blue        | 0.32           | 0.68           |
| Pesticides                       |                             | Atrazine              | 0              | 0.05           |

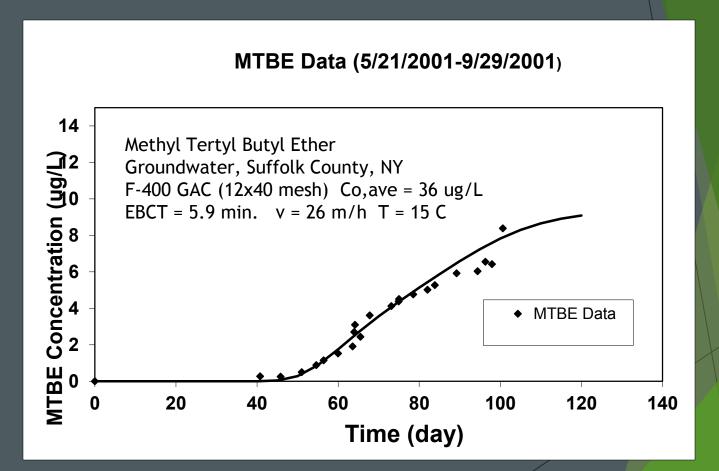
## Impact on Intraparticle Mass Transfer

- Surface Diffusion Coefficient becomes negligible
- Intraparticle Pore Diffusion Coefficient

$$D_p = \frac{D_l}{\tau_p}$$

– VOCs in the Presence of NOM:

- $\tau_p = 1.0$  when Time < 70 days
- $\tau_p = 0.334 + 6.61(10^{-6}) * t$  when Time > 70 days


# Factors Influencing VOC Adsorption in the Presence of NOM

Preloading Time
Adsorbent type
Source Water
Solution chemistry
NOM molecular weight distribution
Solute Type

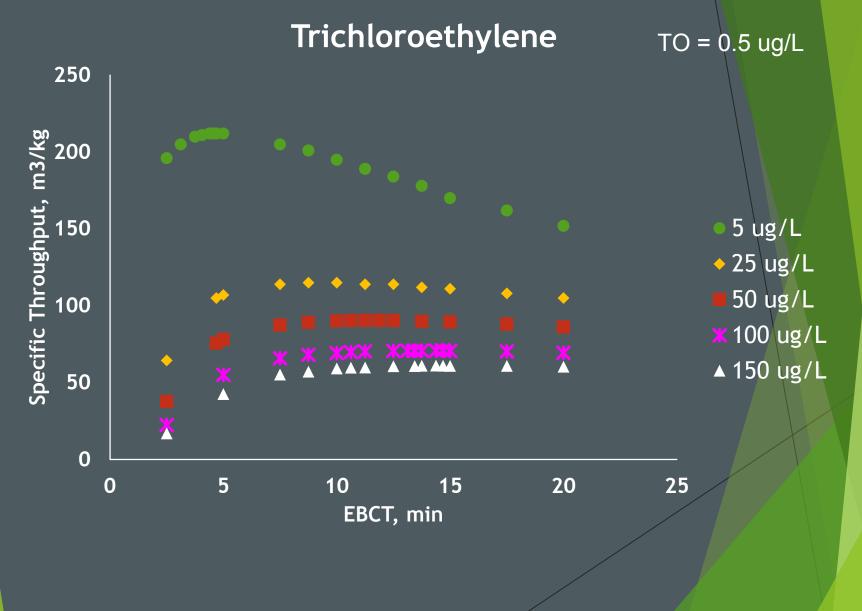
## MODEL VERIFICATION EFFORT

▶ 13 Case Studies 10 Pilot Plant Experiments ▶ 3 Full-Scale Plants ▶ 13 Water Sources ▶ 10 Groundwaters ▶ 3 Surface Waters ▶ 5 Adsorbents 50 Empty Bed Contact Times 16 Volatile & Synthetic Organic Chemicals

## MTBE: PSDM PREDICTION - KARLSRUHE TAP WATER CORRELATION

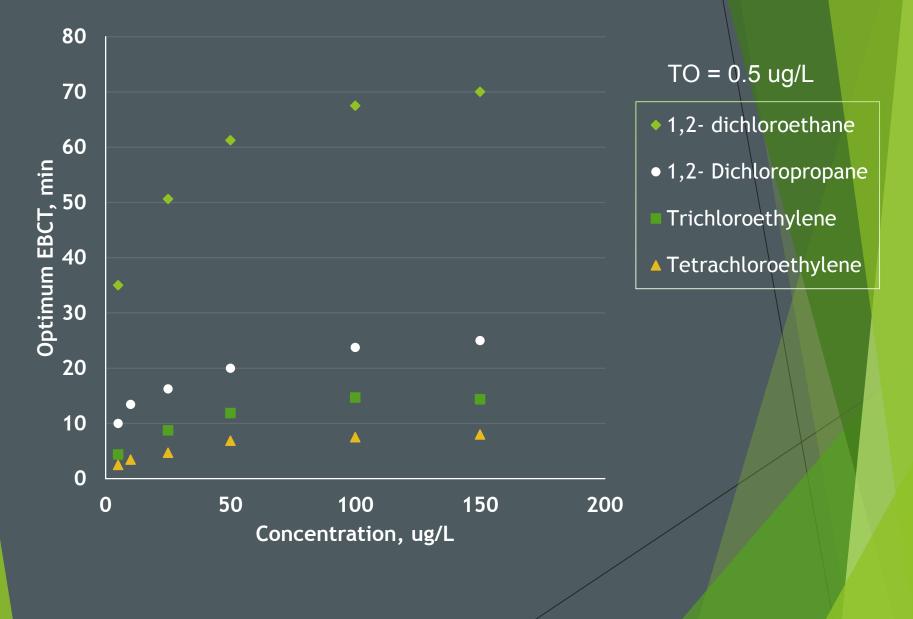



## Summary Table of VOCs and their Freundlich Isotherm Parameters

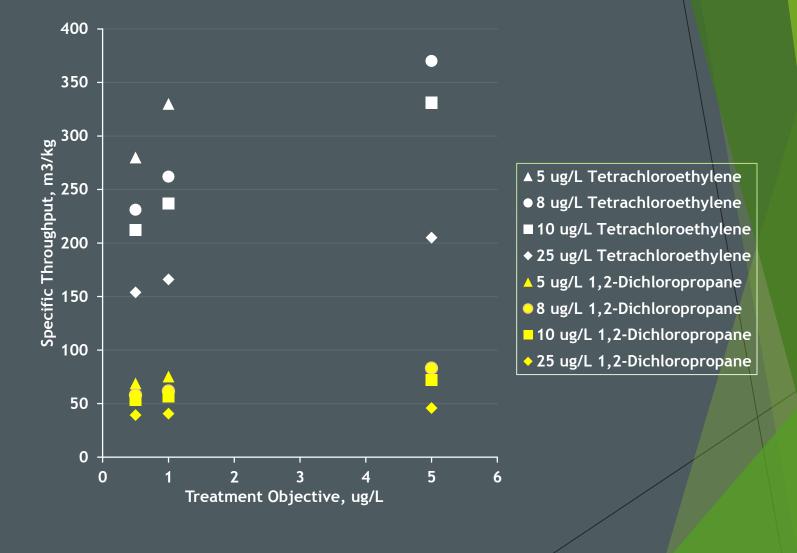

| Compound               | K(mg/g*(L/mg) <sup>1/n</sup> ) | 1/n   | Source                  |
|------------------------|--------------------------------|-------|-------------------------|
| aniline                | 63.4                           | 0.2   | Valderrama, 2010        |
| benzyl chloride        | 144.42                         | 0.346 | Polanyi Estimation      |
| tetrachloroethylene    | 245.6                          | 0.458 | Crittenden et al., 1985 |
| nitrobenzene           | 61.67                          | 0.417 | Polanyi Estimation      |
| trichloroethylene      | 60.1                           | 0.416 | Crittenden et al., 1987 |
| 1,2,3-trichloropropane | 131.4                          | 0.73  | Speth et al., 1988      |
|                        |                                |       |                         |
|                        |                                |       |                         |
|                        |                                |       |                         |
|                        |                                |       |                         |
| vinyl chloride         | 7.77                           | 0.683 | Polanyi Estimation      |
| 1,2-dichloroethane     | 11.8                           | 0.832 | Crittenden 1987         |
| dichloromethane        | 2.339                          | 0.79  | Khan, 2010              |
| urethane               | 1.46                           | 0.581 | Polanyi Estimation      |
| oxirane, methyl        | 0.063                          | 0.869 | Polanyi Estimation      |

Calgon F400 carbon and isotherm temperature range 16 – 20 C

### Relationship between Specific Throughput and EBCT




### Impact of Initial Concentration on Specific Throughput and EBCT




Saudi Aramco: Non-Business Use

### Relationship between Optimum EBCT and Initial Concentration



### Sensitivity of Specific Throughput to Treatment Objective



### Sensitivity of Specific Throughput to Treatment Objective

| Compound            |          | % change in carbon usage rate |                 |  |  |
|---------------------|----------|-------------------------------|-----------------|--|--|
| Compound            | Co, ug/L | TO 5 to 1 ug/L                | TO 5 to .5 ug/L |  |  |
|                     | 25       | 19                            | 25              |  |  |
| Tetrachloroethylene | 10       | 28                            | 36              |  |  |
|                     | 8        | 29                            | 38              |  |  |
|                     | 25       | 11                            | 14              |  |  |
| 1,2-Dichloropropane | 10       | 21                            | 25              |  |  |
|                     | 8        | 26                            | 30              |  |  |

TO = Treatment Objective

## Summary GAC Replacement Costs

|                        | C <sub>o</sub> | Optimum   | GAC Cost = \$/1000 gal |           |           |
|------------------------|----------------|-----------|------------------------|-----------|-----------|
| Compound               | μg/L           | EBCT, min | MCL = 5                | MCL = 1.0 | MCL = 0.5 |
|                        |                |           | μg/L                   | μg/L      | μg/L      |
| aniline                | 25             | 4.4       | 0.049                  | 0.054     | 0.055     |
| benzyl chloride        | 25             | 4.0       | 0.053                  | 0.062     | 0.064     |
| tetrachloroethylene    | 25             | 5.0       | 0.062                  | 0.075     | 0.081     |
| nitrobenzene           | 25             | 6.0       | 0.081                  | 0.098     | 0.100     |
| trichloroethylene      | 25             | 9.0       | 0.087                  | 0.105     | 0.109     |
| 1,2,3-trichloropropane | 25             | 12.0      | 0.113                  | 0.139     | 0.148     |
| Benzene                | 25             | 8.0       | 0.181                  | 0.204     | 0 210     |
| 1,3-Butadiene          | 25             | 9.0       | 0.199                  | 0.224     | 1 232     |
| 1,2- dichloropropane   | 25             | 18.0      | 0.275                  | 0.308     | 0318      |
| Carbon tetrachloride   | 25             | 25        | 0.362                  | 0.412     | 0.1.16    |
| vinyl chloride         | 25             | 25        | 0.944                  | 1.001     | 1.018     |
| 1,2-dichloroethane     | 25             | 50        | 0.957                  | 1.078     | 1.117     |
| dichloromethane        | 25             | 80        | 3.355                  | 3.466     | 3.495     |

#### Unit GAC cost = \$ 1.50 per lb

### Typical GAC Capital Costs

| Configuration                                                   | Single bed | Beds in series |
|-----------------------------------------------------------------|------------|----------------|
| Design Flow, gpm                                                | 511        | 511            |
| Vessel Diameter, ft                                             | 12         | 2 x 12         |
| Site demolition, clearing and grubbing, \$                      | 50,000     | 50,000         |
| Purchase and install GAC vessel(s), \$                          | 150,000    | 300,000        |
| At-grade vessel foundation, \$                                  | 21,000     | 27,000         |
| Site piping modifications/additions, \$                         | 62,500     | 125,000        |
| Electrical, metering, and telemetry modifications, \$           | 50,000     | 75,000         |
| Backwash reclaim tank, foundation, and reclaim pump, \$         | 41,500     | 50,000         |
| Miscellaneous site work, paving, vaults, walls, landscaping, \$ | 132,000    | 145,000        |
|                                                                 |            |                |
| Mobilization @ 2 %, \$                                          | 10,140     | 15,440         |
| Subtotal, \$                                                    | 517,140    | 787,440        |
| Contingencies @ 20%, \$                                         | 103,430    | 157490         |
| Subtotal, \$                                                    | 620,570    | 944,930        |
|                                                                 |            |                |
| Engineering design, \$                                          | 125,000    | 150,000        |
| Construction management and inspection, \$                      | 59,000     | 65,000         |
| Environmental/legal/ administration, \$                         | 25,000     | 25,000         |
| DPH operations plan/permitting, \$                              | 15,000     | 15,000         |
| Total capital costs, \$                                         | 845,000    | 1,200,000      |

### **Typical Operation and Maintenance Assumptions**

| ltem                                      | Value |
|-------------------------------------------|-------|
| Power unit cost, \$/KWh                   | 0.13  |
| Overall Pump efficiency, %                | 70    |
| General labor hours, hr/wk                | 3     |
| Additional inspection & maintenance hr/wk | 1     |
| Sampling labor, hr/sample                 | 0.25  |
| Labor unit cost, \$/hr                    | 122   |
| Required lab & sampling, samples/2wk      | 2     |
| GAC change out labor requirement, hr      | 8     |
| VOC sampling cost, \$/sample              | 150   |
| BACT/HPC sampling costs, \$/sample        | 35    |
| Present worth discount rate, %            | 2.7   |
| Carbon unit cost, \$/lb                   | 1.5   |

## Summary of Present Worth Values

| Co, ug/L | Compound               | Configuration<br>Type | Treatm<br>5 | ent Objecti <sup>.</sup><br>1 | ve, ug/L<br>0.5 |
|----------|------------------------|-----------------------|-------------|-------------------------------|-----------------|
| 25       | aniline                | Single bed            | 1,322,000   | 1,335,000                     | 1,337,000       |
| 25       | benzyl chloride        | Single bed            | 1,334,000   | 1,356,000                     | 1,360,000       |
| 25       | tetrachloroethylene    | Single bed            | 1,353,000   | 1,386,000                     | 1,399,000       |
| 25       | tetrachloroethylene    | 2 beds in series      | 1,674,000   | 1,681,000                     | 1,683,000       |
| 8        | tetrachloroethylene    | Single bed            | 1,333,000   | 1,386,000                     | 1,410,000       |
| 25       | nitrobenzene           | Single bed            | 1,397,000   | 1,438,000                     | 1,443,000       |
| 25       | trichloroethylene      | Single bed            | 1,409,000   | 1,453,000                     | 1,462,000       |
| 25       | 1,2,3-trichloropropane | Single bed            | 1,469,000   | 1,532,000                     | 1,554,000       |
| 25       | Benzene                | Single bed            | 1,636,000   | 1,692,000                     | 1,706,000       |
| 25       | 1,3-Butadiene          | Single bed            | 1,677,000   | 1,737,000                     | 1,757,000       |
| 25       | 1,2- dichloropropane   | Single bed            | 1,861,000   | 1,945,000                     | 1,971,000       |
| 8        | 1,2- dichloropropane   | Single bed            | 1,558,000   | 1,683,000                     | 1,713,000       |
| 25       | Carbon tetrachloride   | Single bed            | 2,052,000   | 2,170,000                     | 2,204,000       |
| 25       | vinyl chloride         | Single bed            | 3,420,000   | 3,555,000                     | 3,595,000       |
| 25       | 1,2-dichloroethane     | Single bed            | 3,441,000   | 3,723,000                     | 3,815,000       |
| 25       | dichloromethane        | Single bed            | 9,036,000   | 9,296,000                     | 9,364,000       |

## Summary

Models can be used to evaluate VOC fixed-bed adsorber performance.

- For a single adsorber the optimum EBCT will depend upon the VOC's adsorption potential and initial concentration.
  - VOCs with higher adsorption potentials require smaller EBCTs to maximize specific throughput.
  - Lower initial VOC concentrations require lower EBCTs to maximize specific throughput.
- Carbon usage rate is dependent upon the initial VOC concentration and treatment objective.
  - As initial VOC concentration decreases the carbon usage rate decreases for a given treatment objective.
  - As initial VOC concentration decreases the effect of lowering the treatment objective on carbon usage rate increases.

## Conclusions

For existing systems treating high initial VOC concentrations the impact of lowering the treatment objective is negligible.

For existing systems treating low initial VOC concentrations the impact of reducing the treatment objective becomes important.

For situations where VOC concentrations are at or just below current MCLs the capital cost is a major issue.

## Questions ?